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Singular spacetime

❑ The vacuum solution of Einstein equation 𝐺𝜇𝜈 = 0:

❑ The event horizon is at 𝑟 = 2𝑀 and 𝑟 = 3𝑀 represents the photon sphere radius.

❑ Kretschmann scalar:

❑Ways to define spacetime singularity:

Schwarzschild spacetime

Divergence of Kretschmann scalar at r = 0, defined as spacetime singularity

➢ Infinite value of one curvature scalar

➢ Geodesic incompleteness (discuss later)

R. M. Wald, General Relativity. Chicago Univ. Pr., Chicago, USA, 1984



Issues and possible solutions  

❑What makes singularity problematic?

❑Methods for dealing with the issue.

❑ Regular black holes:

➢ Singular spacetimes are not physical.

➢ Physical quantities cannot be defined at the point of singularity.

➢ Fate of gravitational collapse of initial stable structure is unknown.

➢ Quantum gravity.

➢ Nonsingular solutions: wormholes, regular black holes, other exotic compact objects.

➢ Sakharov* and Gliner** suggested that a de-Sitter                                                      

core could replace the singularity. 

➢ Can be constructed from Einstein equation in presence 

of matter.

photon sphere

event horizon

regular

 core

* A. D. Sakharov, Zh. Eksp. Teor. Fiz. 49, 345 (1966) [Sov. Phys. JETP 22, 241 (1966)]

** E. B. Gliner, Sov. Phys. JETP 22, 378 (1966).



❑ Bardeen regular black hole:

❑ Hayward regular black hole:

❑ 𝑔 is regularization parameter, at 𝑟 → 0 de-Sitter space 𝑓 𝑟 ≈ 1 − 𝑐2𝑟2  and 

asymptotically flat. 

❑ Generalization of Bardeen and Hayward metric:

Several proposals of  regular BH

J. M. Bardeen, in Proceedings of International Conference GR5 , 1968, Tbilisi, USSR.

S. A. Hayward, PRL 96 031103 (2006).

J.C.S. Neves, A. Saa, PLB 734, 44 (2014).



❑ Ayon-Beato and Garcia propose the matter as nonlinear electrodynamics (NLE),  

❑ Magnetic monopole ansatz,  𝐹𝜃𝜑 = −𝑞𝑚 sin 𝜃  ⇒  𝑭 =
1

4
𝐹𝜇𝜌𝐹𝜇𝜌 =

𝒒𝒎
𝟐

𝟐𝒓𝟒

❑ Regular black holes in presence of scalar field is also available.

❑ There are alternate methods to construct regular black holes.

Bardeen’s BH Hayward’s BH

𝐿(𝑭)

Matter sources of  these geometries

E. Ayon-Beato, A. Garcia, PRL 80, 5056 (1998).

K. A. Bronnikov, J. C Fabris, PRD 96, 251101 (2006),    K. A Bronnikov, Particles 1, 56 (2018).

J. Ovalle, R. Casadio, A. Giusti, PLB 844, 138085 (2023).

All of them are constructed via reverse engineering



Brief  Outline

❑ A method to construct regular solutions

❑ Two specific regular solutions constructed from the method

❑ An alternative approach to construct the solutions

❑ Applications of the solutions

➢ Regular black holes

➢ Regular defect solutions

Reference: A. Kar, S. Kar, arXiv:2504.12042



The method

❑ Einstein equation: 

❑ Assumption of spacetime: 

❑ Assumption of energy-momentum tensor:

❑ From Einstein equation we have:

❑ Our approach:   
Choose

𝜌(𝑟)
Derive

 𝑚(𝑟)

Obtain

 𝜏, 𝑝



➢ Ricci scalar and Ricci contraction:

➢ Kretschmann scalar: 

❑ How to choose the density profile?

Some known dark matter profiles:

❑ Regularity of the independent curvature scalars:

H. Zhao, MNRS 278, 488 (1996).

Parametrized Dekel-Zhao dark matter 

density profile

NFW Pseudo isothermal King

Parameter values

Density profile

Astrophys. J. 462, 563 (1996). Astron. J. 67, 471 (1962).MNRS 249, 523 (1991).

E. Zakhary, C. B. G. Mcintosh, GRG 29, 539 (1997).



❑We consider the King dark matter density profile  (𝜇 = 3, 𝜈 = 2, 𝛼 = 0)

❑ Solving Einstein equation, we have the corresponding metric function:

❑ At small values of 𝑟, 𝑟 → 0,  𝑓(𝑟) ≈ 1 − 𝑐2𝑟2    ⇒  a de-Sitter core   

❑ The asymptotic expansion of the metric function:

A new regular black hole 

I. King, Astron. J. 67, 471 (1962).

Combination of powers of  
𝟏

𝒓
 , positive powers of 𝐥𝐧(𝒓) → Polyhomogeneous spacetime

P. T. Chru´sciel, M. A. MacCallum, D. B. Singleton, Phil. Trans. R. Soc. A 350, 113–141(1995).



no black
 hole

Extremal
 BH

Double 
horizon 

Based on the number of real positive roots of the equation f(r) = 0, we have:

❑ Locations of Horizons:

➢ Double horizon for 8𝜋𝜌0𝑅2 > 3.448

➢ Single horizon for 8𝜋𝜌0𝑅2 = 3.448

➢ Horizon-less when 8𝜋𝜌0𝑅2 < 3.448

❑ Regularity of curvature invariants:

Metric is regular all over the radial coordinate.



❑ Energy conditions:

➢ The diagonal elements of the energy-momentum 

tensor are following:

➢ Null Energy Condition (NEC), Weak Energy 

Condition (WEC):

NEC and WEC hold for all 𝑟

➢ Strong Energy Condition (SEC):

SEC is violated for 𝑟 < 2𝑅

Fig: The dashed lines and solid lines 

represent ρ and ρ + p, respectively. 



➢ In the GR coupled to matter scenario:

➢ The matter Lagrangian:

➢ Here,

➢ The nonzero component of Maxwell field strength tensor: 𝐹𝜃𝜙 = −𝑞𝑚 sin 𝜃

➢ 𝑞𝑚 is the total magnetic charge.

➢ 𝛿 = 0,  𝐿 𝐹 = 0 → Schwarzschild solution

❑Matter source for the geometry:



Parameters Density profile Metric function

𝜇 = 3
𝜈 = 2
𝛼 = 1

𝜇 = 3
𝜈 = 3
𝛼 = 1

The known regular black holes 

❑ When 𝜈 = 𝛼 and 𝜇 ≥ 3, the density profile becomes:

The corresponding metric function is generalized Neves-Saa regular solution:

For 𝜇 = 3, 𝜈 = 2 → Bardeen solution,  𝜇 = 𝜈 = 3 → Hayward solution 

❑ Other solutions:

I. Dymnikova, CQG 21, 4417-4429 (2004).

K. A. Bronnikov, IJMPD 27, 1841005 (2018).

J.C.S. Neves, A. Saa, PLB 734, 44 (2014).



A regular defect solution 

❑We consider the Pseudo-isothermal dark matter profile  (𝜇 = 3, 𝜈 = 2, 𝛼 = −1)

❑ The corresponding metric function:

❑ For small 𝑟, metric function behaves like de-Sitter,

❑ The asymptotic behaviour:

❑ To understand the deficit, we perform the following transformation:

❑ The transformation is allowed for, 𝟖𝝅𝑹𝟐𝝆𝟎 < 𝟏

The geometry is not asymptotically Minkowski ⇒ Solid angle deficit

K.G. Begeman, A.H. Broeils, R.H. Sanders, MNRS 249, 523 (1991).



❑ The transformed metric:

❑ Here, ሚ𝑓( ǁ𝑟) reaches unity asymptotically.

❑ Surface area of the spherical surface with radius ǁ𝑟 is 

4𝜋 1 − 8𝜋𝑅2𝜌0 ǁ𝑟2. 

Surface area is less than the entire sphere → deficit / defect

❑ Spacetime structure:

Source: Wikipedia

➢ No real roots of the equation 𝑓 𝑟 = 0.

➢ No horizon-like structure.

The geometry represents a regular, horizon-

less, defect spacetime



➢ Embedding the 𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝜃 =
𝜋

2
 slice in 

the 3d Euclidean cylindrical geometry

➢ The 2d slice:

➢ Cylindrical geometry:  

➢ Profile function 𝑧(𝑟)

❑ Regularity of curvature scalars:

Metric is regular all over the radial coordinate.

❑ Embedding diagram:



❑ Energy conditions:

➢ The diagonal elements of the energy-momentum 

tensor are following:

➢ Null Energy Condition (NEC) and Weak Energy 

Condition (WEC):

NEC and WEC hold for all 𝑟

➢ Strong Energy Condition (SEC):

SEC is violated for all 𝑟

Fig: The dashed lines and solid lines 

represent ρ and ρ + p, respectively. 



➢ The model of a cloud of strings is based on a surface bivector Σ𝜇𝜈 that spans the 

2D timelike world sheet of strings.

➢ The energy-momentum tensor:

➢ For the fluid of strings, the energy-momentum tensor:

➢ For the symmetries of the defect metric, the diagonal elements:

➢ The components are:

❑ Lagrangian model for the required matter:

P. S. Letelier, PRD 20, 1294 (1979).

P. S. Letelier, Nuov. Cim. B 63, 519–528 (1981).



➢ Equation of state:                                  Polytropic fluid of strings

➢ The asymptotic expansion of 𝜌 and 𝑝 are,

➢ The corresponding metric function is

It can be associated with the cloud of strings

Asymptotically, the geometry represents a flat spacetime surrounded by a cloud of 

strings, which may be a reason behind the appearance of the solid angle deficit.



Geodesic completeness 

❑ Radial time-like geodesic:

❑ Conserved quantity;   𝐸 = −𝑔𝑡𝑡 ሶ𝑡

❑ Affine parameter:       𝝀 𝒓𝟏, 𝒓𝟐 = 𝒓𝟏׬

𝒓𝟐  
𝒅𝒓

ሶ𝒓𝟐

geodesic completeness  𝜆(−∞, +∞)       

𝑟 = 0 ሶr2 at 𝑟 = 0 λ R, 0  Extension of  spacetime ሶr2 at negative ‘r’

singular diverge finite Not possible


regular finite finite Possible (in -ve values of ‘r’)

i) Diverges  

ii) Smooth and 

continuous 

Everywhere finite behaviour of −𝑔𝑡𝑡  a Geodesically complete spacetime

T. Zhou and L. Modesto, PRD 107, 044016 (2023)



❑ Geodesic completeness of the regular black hole:

❑ Geodesic completeness of defect solution:

Thus, both of the solutions are geodesically

complete.



❑ Anisotropic TOV equation:

❑ We consider the equation of state:

❑ Solution of the TOV equation:

❑ Physicality conditions:  𝑎 + 1 > 0, 𝜆 > 0 and 𝑏 < 0

❑ 𝑎 =
1

2
, 𝑏 = −

3

2
, 𝜆 =

5

3
 → King density profile→ The new regular black hole

❑ 𝑎 = 0, 𝑏 = −1, 𝜆 = 2 → Pseudo-isothermal density profile→ The defect solution

An alternative approach 



Black hole shadow
o Simple shadow                                                                   o Silhouette

Source:tuntex-carpet Source:quora

Source :researchgate

Shadow radius:

𝑟𝑠ℎ
2 =

𝑟𝑝ℎ
2

−𝑔𝑡𝑡 𝑟𝑝ℎ

Source :V. Perlick and O. Y. Tsupko, Phys. Rep. 
947, 1-39 (2022)



Constraints on metric parameters from EHT

➢ The observed angular diameter for M87* is 42 ± 3 𝜇𝑎𝑠, distance from observer 

16.8 ± 0.8  𝑀𝑝𝑐 

𝜌0~102 𝑘𝑔/𝑚3 and 𝑅~1012 𝑚𝑒𝑡𝑒𝑟 

➢ For Sgr A*, the angular diameter is 51.8 ± 2.3 𝜇𝑎𝑠, distance measurement is 

(8277 ± 9 ± 33)pc

𝜌0~108 𝑘𝑔/𝑚3 and 𝑅~109 𝑚𝑒𝑡𝑒𝑟 

Astrophys. J. Lett. 875, L1 (2019),   Astrophys. J. Lett. 694, 556–572 (2009)

Astrophys. J. Lett. 930, L12 (2022),  Astron. Astrophys. 657, L12 (2022).



Model of  a stable star (Gravastar) 
❑ The defect geometry have following features:

❑ We consider the Visser–Wiltshire’s dynamically stable thin shell model. 

❑ The three-layer model is following:

❑ Sen-Israel-Darmois junction condition:

➢ It behaves like de-Sitter space at the centre.

➢ Its embedding diagram illustrates that its geometry is like the interior of a star.

➢ The polytropic fluid of strings can model the required matter 

M. Visser, D.L. Wiltshire, CQG 21, 1135 (2004).

➢ An outer Schwarzschild geometry.

➢ A thin shell with surface density, surface tension.

➢ Interior regular defect geometry.

➢ Induced metric on shell is same from inside and outside.

➢ Jump in the extrinsic curvature is proportional to the surface energy-momentum.

W. Israel, NCB 48, 463 (1967).

Null surface stress-energy → boundary.   Finite stress energy → thin shell.



❑ The exterior and interior metrics:

❑We consider the junction surface at 𝑟 = 𝑎0,  𝑎0 > 2𝑀

❑ The new variables:

❑ The ratio of 𝜇(𝑎0) and Π(𝑎0) is defined as equation of state parameter for the 

matter in the shell.

Surface energy density 𝜇(𝑎0) Surface tension Π(𝑎0) Equation of state

𝟖𝝅𝑹𝟐𝝆𝟎 = 𝟎. 𝟓 



Summary and conclusion

❑ The parametrized Dekel-Zhao density profile is used to construct new regular 

solutions.

❑We construct a new regular black hole solution which is sourced by NLE 

Lagrangian. 

❑When the density profile is pseudo-isothermal, the geometry represents a 

regular defect solution.

❑We construct the solutions using TOV equation.

❑ Finally, we discuss the astrophysical applications.



THANK YOU
Email: anjankar.phys@gmail.com



❑ Given the interior and exterior metrics:

❑ Connected along a dynamical time-like hyper-surface (Σ) at 𝑟 = 𝑎 𝑡 ,

❑ Sen-Israel-Darmois junction condition:

❑ The extrinsic curvature:

❑ The surface energy-momentum tensor:

❑ Surface energy density:

❑ Surface tension:

➢ Induced metric on Σ is same from inside and outside.

➢ The jump in the extrinsic curvature is directly proportional to the surface 

energy-momentum tensor 𝑆𝑖𝑗 at the shell.

A brief  of  Visser-Wiltshire’s model

Vanishing surface stress-energy makes junction surface as boundary. Finite stress energy 

makes junction thin shell.

W. Israel, Nuovo Cimento B (1965-1970) 48, 463 (1967).



Junction formalism:

30
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